Bac Mathématiques Série ES - 2016

Intégrales

TOUS LES EXERCICES
POUR AVOIR 20/20
- C'EST CADEAU!-

alainpiller. fr

ALAIN PILLER

PRIMITIVES, INTÉGRALES Rien de plus facile!

BAC MATHS

SAVOIR

TRAINING

INTÉRROS LYCÉES

EXOS ANNALES BAC

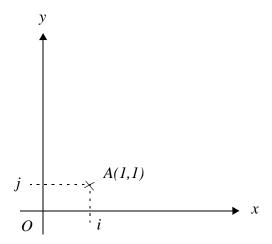
PREMIUM ÉDITEUR

SAVOIR 1	
TRAINING	7
INTÉRROS LYCÉES 35	•

SAVOIR

A Unité d'aire

Dans un repère orthogonal $(O; \overrightarrow{Oi}, \overrightarrow{Oj})$, **l'unité d'aire** (**u.a.**), est l'aire du rectangle (OiAj) avec A(1, 1).



B Primitive de f

Soit f une fonction continue sur un intervalle I.

On appelle **primitive de** f sur I toute fonction F dérivable sur I telle que : F' = f.

- Soit f une fonction définie et continue sur un intervalle I, qui admet une primitive G sur I. Alors, f admet une infinité de primitives sur I et toute primitive F de f sur I est : F(x) = G(x) + c, c ∈ R.
- Pour x_o et y_o fixés, il existe une unique primitive F de f avec : $F(x_o) = y_o$.
- Toute fonction continue sur un intervalle I admet des primitives.

C Intégrale d'une fonction continue

• Soit f une fonction continue et positive sur [a, b] et ζ sa courbe représentative dans le repère orthogonal $(O; \overrightarrow{Oi}, \overrightarrow{Oj})$.

L'intégrale de "a" à "b" de f est l'aire $\mathcal A$ du domaine situé sous la courbe ζ :

$$A = \int_a^b f(x) dx.$$

• Soit f une fonction continue sur [a, b], soit F une primitive de f:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

D Valeur moyenne

Pour toute fonction f continue sur I = [a, b], la valeur moyenne de f sur [a, b] est le réel m tel que : $m = \frac{1}{b-a} \int_{a}^{b} f(x)dx$.

E Propriétés de l'intégrale

- ①. Si f est intégrable sur [-a, a] et si f est une fonction paire (f(-x) = f(x)) alors : $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$.
- ②. Si f est intégrable sur [-a, a] et si f est une fonction impaire (f(-x) = -f(x)) alors : $\int_{-a}^{a} f(x)dx = 0$.

- ③. Si f est intégrable sur un intervalle [a, b] avec a < b, alors : $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$
- (4). Nous avons : $\int_{a}^{a} f(x)dx = 0$
- (5). Si f est intégrable sur un intervalle [a, b] avec a < b, alors :

$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = \int_{a}^{b} f(x)dx, c \in [a, b].$$

C'est ce qu'on appelle la relation de CHASLES.

(6). Si f et g sont intégrables sur un intervalle [a, b] avec a < b, alors :

$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$$

 \bigcirc . Si f est intégrable sur un intervalle [a, b] avec a < b, alors :

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx, \, \forall \lambda \in \mathbb{R}.$$

8). Si f et g sont intégrables sur un intervalle [a, b] avec a < b, alors :

$$\int_{a}^{b} (\lambda f + \mu g)(x) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx, \, \forall \lambda \text{ et } \mu \in \mathbb{R}.$$

on suppose:
$$\forall x \in [a, b]$$
 si $f(x) \le g(x)$, alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

(0). Si f est intégrable sur un intervalle [a, b] avec a < b, alors :

$$f(x) \ge 0 \Rightarrow \int_{a}^{b} f(x) dx \ge 0$$
.

F Tableau des différentes primitives

Tableau 1 :

f	F	I
K	$K \cdot x$	R
x^{n} $(n \neq 0 \text{ et } n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\mathcal{R} \text{ si } n > 0$ $\mathbf{n} = 0$ $\mathbf{n} = 0$ $\mathbf{n} = 0$ $\mathbf{n} = 0$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	$]0,+\infty[$
$\frac{1}{x^2}$	$\frac{-1}{x}$	${\mathbb R}^*$
$(x \neq 0)$		
e^{x}	e ^x	R
$\frac{1}{x}$	$\ln(x)$	$]0,+\infty[$
$\sin(x)$	$-\cos(x)$	R
$\cos(x)$	$\sin(x)$	R
ln(x)	$\mathbf{xln}(x) - x$]0, +∞[

Tableau 2:

f	F	Conditions
$K \cdot u'$	K · u	-
u' + v'	u + v	-
$u' \cdot u^n$ $(n \neq 0 \text{ et } n \neq -1)$	$\frac{u^{n+1}}{n+1}$	 Si n < -1 u ne s'annule pas sur I
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	u strictement positive sur I
$\frac{u'}{u}$	$\ln(u)$	u strictement positive sur I
$\frac{u'}{u^2}$	$\frac{-1}{u}$	<i>u</i> ≠ 0 sur I
$(n \in \mathbb{N}, n \geq 2)$		
u'e ^u	e ^u	-
$\sin(ax+b)$	$\frac{-1}{a}\cos(ax+b)$	-
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)$	-

Avec:

- \mathbf{u} et \mathbf{v} dérivables sur \mathbf{I}
- $a, b \in \mathbb{R}$ et $a \neq 0$

TRAINING

TRAINING 1	PAGE 9

- TRAINING 2..... PAGE 17
- TRAINING 3..... PAGE 24
- TRAINING 4..... PAGE 27

TRAINING 1

Déterminer une primitive F sur I de la fonction f dans les cas suivants :

$$f(x) = 3 \text{ avec } I = \mathbb{R}.$$

$$f(x) = 7x \text{ avec } I = \mathbb{R}.$$

3
$$f(x) = 3x^2 + 7x + 3$$
 avec $I = \mathbb{R}$.

4
$$f(x) = \frac{1}{x} + 10 \text{ avec } I =]0, +\infty[$$
.

5
$$f(x) = \frac{1}{x^2} + 7x + 10 \text{ avec } I = \mathbb{R}^*.$$

6
$$f(x) = 3\sqrt{x} + 21x \text{ avec } [0, +\infty[.$$

$$f(x) = xe^{x^2} \text{ avec } I = \mathbb{R}.$$

8
$$f(x) = 6xe^{(x^2+1)}$$
 avec $I = \mathbb{R}$.

9
$$f(x) = 2e^{(3x-2)}$$
;; avec $I = \mathbb{R}$.

10
$$f(x) = \frac{4x}{2x^2 + 4}$$
 avec $I = \mathbb{R}$.

11
$$f(x) = \frac{2x+1}{x^2+x+3}$$
 avec $I = \mathbb{R}$.

12
$$f(x) = \frac{8x}{1-x^2}$$
 avec $I =]-1, 1[$.

13
$$f(x) = \frac{4}{(2x-1)^4}$$
 avec $I =]\frac{1}{2}, +\infty[$.

CORRECTION

1 Calculons une primitive de f sur \mathbb{R} :

$$f(x) = 3$$
 et $I = \mathbb{R}$

D'où : f est continue sur $I = \mathbb{R}$, elle admet donc une primitive sur \mathbb{R} cad une fonction F dérivable sur \mathbb{R} avec F' = f.

Ici : $\overline{F(x)} = 3x$ et nous avons bien F'(x) = 3.

2 Calculons une primitive de f sur \mathbb{R} :

$$f(x) = 7x$$
 et $I = \mathbb{R}$.

D'où : f est continue sur $I = \mathbb{R}$, elle admet donc une primitive sur \mathbb{R} cad une fonction F dérivable sur \mathbb{R} avec F' = f.

Ici: $F(x) = \frac{7}{2}x^2$ et nous avons bien F'(x) = 7x.

3 Calculons une primitive de f sur \mathbb{R} :

$$f(x) = 3x^2 + 7x + 3$$
 et $I = \mathbb{R}$.

D'où : f est continue sur $I = \mathbb{R}$, elle admet donc une primitive sur \mathbb{R} cad une fonction F dérivable sur \mathbb{R} avec F' = f.

Ici: $F(x) = x^3 + \frac{7}{2}x^2 + 3x$ et nous avons bien $F'(x) = 3x^2 + 7x + 3$.

4 Calculons une primitive de f sur $]0, +\infty[$:

$$f(x) = \frac{1}{x} + 10$$
 et $I =]0, +\infty[$.

D'où : f est continue sur $I =]0, +\infty[$, elle admet donc une primitive sur $]0, +\infty[$ cad une fonction F dérivable sur $]0, +\infty[$ avec F' = f.

Ici : $F(x) = \ln(x) + 10x$ et nous avons bien $F'(x) = \frac{1}{x} + 10$.

5 Calculons une primitive de f sur $\stackrel{*}{\mathbb{R}}$:

$$f(x) = \frac{1}{x^2} + 7x + 10$$
 et $I = \mathbb{R}^*$.

D'où : f est continue sur $I = \mathbb{R}^*$, elle admet donc une primitive sur \mathbb{R}^* cad une fonction F dérivable sur \mathbb{R}^* avec F' = f.

Ici:
$$F(x) = \frac{-1}{x} + \frac{7}{2}x^2 + 10x$$
 et nous avons bien $F'(x) = \frac{1}{x^2} + 7x + 10$.

6 Calculons une primitive de f sur $[0, +\infty[$:

$$f(x) = 3\sqrt{x} + 21x$$
 et $I = [0, +\infty[$.

D'où : f est continue sur $I = [0, +\infty[$, elle admet donc une primitive sur $]0, +\infty[$ cad une fonction F dérivable sur $[0, +\infty[$ avec F' = f.

Ici:
$$F(x) = 2x^{3/2} + \frac{21}{2}x^2$$
 et nous avons bien $F'(x) = 3\sqrt{x} + 21x$.

7 Calculons une primitive de f sur \mathbb{R} :

$$f(x) = xe^{x^2}$$
 et $I = \mathbb{R}$.

D'où : f est continue sur $I = \mathbb{R}$, elle admet donc une primitive sur \mathbb{R} cad une fonction F dérivable sur \mathbb{R} avec F' = f.

Ici:
$$F(x) = \frac{1}{2}e^{x^2}$$
 et nous avons bien $F'(x) = xe^{x^2}$. $(u'e^u)$

8 Calculons une primitive de f sur \mathbb{R} :

$$f(x) = 6xe^{(x^2+1)} \text{ avec } I = \mathbb{R}.$$

D'où : f est continue sur $I = \mathbb{R}$, elle admet donc une primitive sur \mathbb{R} cad une fonction F dérivable sur \mathbb{R} avec F' = f.

Ici:
$$F(x) = 3 e^{(x^2 + 1)}$$
 et nous avons bien $F'(x) = 6xe^{(x^2 + 1)}$. $(u'e^u)$

9 Calculons une primitive de f sur \mathbb{R} :

$$f(x) = 2e^{(3x-2)}$$
 avec $I = \mathbb{R}$.

D'où : f est continue sur $I = \mathbb{R}$, elle admet donc une primitive sur \mathbb{R} cad une fonction F dérivable sur \mathbb{R} avec F' = f.

Ici:
$$F(x) = \frac{2}{3} e^{(3x-2)}$$
 et nous avons bien $F'(x) = 2e^{(3x-2)}$. $(u'e^u)$

10 Calculons une primitive de f sur \mathbb{R} :

$$f(x) = \frac{4x}{2x^2 + 4} \text{ avec } I = \mathbb{R}.$$

D'où : f est continue sur $I = \mathbb{R}$, elle admet donc une primitive sur \mathbb{R} cad une fonction F dérivable sur \mathbb{R} avec F' = f.

Ici :
$$F(x) = \ln(2x^2 + 4)$$
 et nous avons bien $F'(x) = \frac{4x}{2x^2 + 4} \cdot \left(\frac{u'}{u}\right)$

11 Calculons une primitive de f sur \mathbb{R} :

$$f(x) = \frac{2x+1}{x^2+x+3} \text{ avec } I = \mathbb{R}.$$

D'où : f est continue sur $I = \mathbb{R}$, elle admet donc une primitive sur \mathbb{R} cad une fonction F dérivable sur \mathbb{R} avec F' = f.

Ici :
$$F(x) = \ln(x^2 + x + 3)$$
 et nous avons bien $F'(x) = \frac{2x+1}{x^2 + x + 3} \cdot \left(\frac{u'}{u}\right)$

12 Calculons une primitive de f sur]-1, 1[:

$$f(x) = \frac{8x}{1-x^2}$$
 avec $I =]-1, 1[.$

D'où : f est continue sur I =]-1, 1[, elle admet donc une primitive sur]-1, 1[cad une fonction F dérivable sur]-1, 1[avec F' = f.

Ici :
$$F(x) = -4\ln(1-x^2)$$
 et nous avons bien $F'(x) = \frac{8x}{1-x^2} \cdot \left(\frac{u'}{u}\right)$

13 Calculons une primitive de f sur $]\frac{1}{2}$, $+\infty[$:

$$f(x) = \frac{4}{(2x-1)^4}$$
 et $I =]\frac{1}{2}, +\infty[$.

D'où : f est continue sur $I =]\frac{1}{2}, +\infty[$, elle admet donc une primitive sur $]\frac{1}{2}, +\infty[$ cad une fonction F dérivable sur $]\frac{1}{2}, +\infty[$ avec F' = f.

Ici:
$$F(x) = \frac{-2}{3(2x-1)^3}$$
 et nous avons bien $F'(x) = \frac{4}{(2x-1)^4} \cdot (u'u^n \text{ avec } n = -3)$

Déterminer les primitives sur I des fonctions f suivantes :

1
$$f_1(x) = \frac{1}{7x+3} \text{ sur } I = [3, 10].$$

$$f_2(x) = 3(7x-1)^5 \text{ sur } I = \mathbb{R}.$$

3
$$f_3(x) = \frac{1}{x^2} - \frac{2}{x^3} \text{ sur } I =]0, +\infty[$$
.

CORRECTION

1 Déterminons F_1 sur [3, 10]:

 f_1 est continue sur I = [3, 10], elle admet donc une primitive sur [3, 10] cad une fonction F_1 dérivable sur [3, 10] avec $F'_1 = f_1$.

Ici:
$$F_1(x) = \frac{\ln(7x+3)}{7} \cdot \left(\frac{u'}{u}\right)$$

Dans ces conditions toutes les primitives sur [3, 10] de f_1 sont :

$$G_1(x) = F_1(x) + c \Rightarrow \boxed{G_1(x) = \frac{\ln(7x+3)}{7} + c, c \in \mathbb{R}}.$$

Par exemple nous avons:

$$G_1(x) = \frac{\ln(7x+3)}{7} + 4,$$

$$G_1(x) = \frac{\ln(7x+3)}{7} - 6,$$

$$G_1(x) = \frac{\ln(7x+3)}{7} + 69 \text{ etc...}$$

2 Déterminons F_2 sur \mathbb{R} :

 f_2 est continue sur $I=\mathbb{R}$, elle admet donc une primitive sur \mathbb{R} cad une fonction F_2 dérivable sur \mathbb{R} avec $F'_2=f_2$.

Ici :
$$F_2(x) = \frac{1}{14}(7x-1)^6$$
 . $(u'u^n)$

Dans ces conditions toutes les primitives sur $\mathbb R$ de f_2 sont :

$$G_2(x) = F_2(x) + c \Rightarrow G_2(x) = \frac{(7x-1)^6}{14} + c, c \in \mathbb{R}$$

3 Déterminons F_3 sur $]0,+\infty[$:

 f_3 est continue sur $I=]0,+\infty[$, elle admet donc une primitive sur $]0,+\infty[$ cad une fonction F_3 dérivable sur $]0,+\infty[$ avec $F'_3=f_3$.

Ici :
$$F_3(x) = \frac{-1}{x} + \frac{1}{x^2}$$
.

Dans ces conditions toutes les primitives sur $]0, +\infty[$ de f_3 sont :

$$G_3(x) = F_3(x) + c \Rightarrow G_3(x) = \frac{-1}{x} + \frac{1}{x^2} + c, c \in \mathbb{R}$$

Pour les fonctions suivantes, démontrer que F est une primitive sur un intervalle I (à préciser), et déterminer la primitive de f qui s'annule en $x = x_0$:

1
$$f(x) = 3xe^x$$
, $F(x) = 3xe^x - 3e^x$, $x_0 = 1$.

$$f(x) = e^x - \frac{1}{x}, F(x) = e^x - \ln(x), x_0 = 3.$$

3
$$f(x) = \cos(3x+2) + 4$$
, $F(x) = \frac{1}{3}\sin(3x+2) + 4x$, $x_0 = \pi$.

CORRECTION

1 ⓐ. Démontrons que F est une primitive de f sur I:

 $I = \mathbb{R}$.

Ici : f est continue sur $I = \mathbb{R}$. Elle admet donc une primitive F dérivable sur \mathbb{R} telle que : F' = f.

$$\forall x \in \mathbb{R}, F'(x) = 3e^x + 3xe^x - 3e^x \Rightarrow F'(x) = 3xe^x.$$

D'où on a bien : F'(x) = f(x), $\forall x \in \mathbb{R}$.

Par conséquent, F est une primitive de f sur \mathbb{R} .

(b). Déterminons la primitive de f qui s'annule en x = 1:

Il s'agit de déterminer $c \in \mathbb{R}$ telle que : $G(1) = 0 \Leftrightarrow F(1) + c = 0$.

$$F(1) + c = 0 \Leftrightarrow (3e - 3e) + c = 0 \Rightarrow c = 0$$
.

Au total, la primitive de f qui s'annule en x = 1 est : $F(x) = 3xe^x - 3e^x$

2 ⓐ. Démontrons que F est une primitive de f sur I:

 $I =]0, +\infty[$.

Ici : f est continue sur $I =]0, +\infty[$. Elle admet donc une primitive F dérivable sur $]0, +\infty[$ telle que : F' = f.

$$\forall x \in]0, +\infty[, F'(x) = e^x - \frac{1}{x}.$$

D'où on a bien : F'(x) = f(x), $\forall x \in]0, +\infty[$.

Par conséquent, F est une primitive de f sur $]0, +\infty[$.

(b). Déterminons la primitive de f qui s'annule en x = 3:

Il s'agit de déterminer $c \in \mathbb{R}$ telle que : $G(3) = 0 \Leftrightarrow F(3) + c = 0$.

$$F(3) + c = 0 \Leftrightarrow (e^3 - \ln 3) + c = 0 \Rightarrow \boxed{c = \ln(3) - e^3}$$

Au total, la primitive de f qui s'annule en x = 3 est :

$$F(x) = e^{x} - \ln(x) + (\ln(3) - e^{3}).$$

3 (a). Démontrons que F est une primitive de f sur I:

 $I = \mathbb{R}$.

Ici : f est continue sur $I = \mathbb{R}$. Elle admet donc une primitive F dérivable sur \mathbb{R} telle que : F' = f.

$$\forall x \in \mathbb{R}, \, F'(x) = \frac{1}{3} \times 3\cos(3x+2) + 4 \Leftrightarrow F'(x) = \cos(3x+2) + 4.$$

D'où on a bien : F'(x) = f(x), $\forall x \in \mathbb{R}$.

Par conséquent, F est une primitive de f sur \mathbb{R} .

(b). Déterminons la primitive de f qui s'annule en $x = \pi$:

Il s'agit de déterminer $c \in \mathbb{R}$ telle que : $G(\pi) = 0 \Leftrightarrow F(\pi) + c = 0$.

$$F(\pi) + c = 0 \Leftrightarrow \left(\frac{\sin(3\pi + 2)}{3} + 4\pi\right) + c = 0$$

$$\Rightarrow c = -\left[\frac{\sin(3\pi+2)}{3} + 4\pi\right].$$

Au total, la primitive de f qui s'annule en $x = \pi$ est :

$$F(x) = \frac{1}{3}\sin(3x+2) + 4x - \left[\frac{\sin(3\pi+2)}{3} + 4\pi\right]$$

TRAINING 2

Calculer les intégrales suivantes :

$$I_1 = \int_0^1 (x+3) dx.$$

$$I_2 = \int_3^6 (x^2 + 6) dx.$$

3
$$I_3 = \int_1^2 (x-3)(x-9)dx$$
.

$$I_4 = \int_0^1 (3x^{1/2} - 6x) dx.$$

$$I_5 = \int_0^3 (\sqrt{2x} + x^{1/3}) dx.$$

$$I_6 = \int_{-1}^0 \frac{dx}{x^3}.$$

7
$$I_7 = \int_{1}^{2} \frac{dx}{3x^2}$$
.

8
$$I_8 = \int_1^2 \left(x - \frac{1}{\sqrt{x}}\right) dx$$
.

9
$$I_9 = \int_0^1 \frac{dx}{x+2}$$
.

10
$$I_{10} = \int_{3}^{6} e^{x} (e^{x} + 3) dx$$
.

11
$$I_{11} = \int_{-1}^{3} x|x|dx$$
.

12
$$I_{12} = \int_{2}^{0} \sqrt{|1-x|} dx$$
.

13
$$I_{13} = \int_{-1}^{1} (x^2 - \sqrt{|x|})^3 \sqrt{x^2} dx$$
.

14
$$I_{14} = \int_{-2}^{2} (x^3 - \sqrt[3]{x}) x^2 dx$$
.

15
$$I_{15} = \int_{-1}^{1} e^{(-2x+1)} dx$$
.

CORRECTION

1 Calculons l'intégrale définie I_1 :

Nous savons que:

$$I_1 = \int_0^1 (x+3)dx$$
 (a)

$$(a) \Leftrightarrow I_1 = \int_0^1 x dx + \int_0^1 3 dx \quad (b)$$

$$(b) \Leftrightarrow I_1 = \left[\frac{x^2}{2}\right]_0^1 + [3x]_0^1 \quad (c)$$

$$(c) \Rightarrow \boxed{I_1 = \frac{7}{2}}.$$

² Calculons l'intégrale définie I_2 :

Nous savons que:

$$I_2 = \int_3^6 (x^2 + 6) dx \qquad (a)$$

$$(a) \Leftrightarrow I_2 = \int_2^6 x^2 dx + \int_2^6 6 dx \quad (b)$$

$$(b) \Leftrightarrow I_2 = \left[\frac{x^3}{3}\right]_3^6 + \left[6x\right]_3^6 \quad (c)$$

$$(c) \Rightarrow \boxed{I_2 = 81}$$

3 Calculons l'intégrale définie I_3 :

$$I_3 = \int_{1}^{2} (x-3)(x-9)dx \qquad (a)$$

$$(a) \Leftrightarrow I_3 = \int_1^2 (x^2 - 12x + 27) dx$$
 (b)

$$(b) \Leftrightarrow I_3 = \int_1^2 x^2 dx + \int_1^2 (-12x) dx + \int_1^2 27 dx \quad (c)$$

$$(c) \Leftrightarrow I_3 = \left[\frac{x^3}{3}\right]_1^2 + \left[-6x^2\right]_1^2 + \left[27x\right]_1^2 \quad (d)$$

$$(d) \Rightarrow \boxed{I_3 = \frac{34}{3}} \cdot$$

4 Calculons l'intégrale définie I_4 :

Nous savons que:

$$I_4 = \int_0^1 (3x^{1/2} - 6x) dx \quad (a)$$

$$(a) \Leftrightarrow I_4 = \int_0^1 3x^{1/2} dx + \int_0^1 (-6x) dx \quad (b)$$

$$(b) \Leftrightarrow I_4 = [2x^{3/2}]_0^1 + [-3x^2]_0^1 \quad (c)$$

$$(c) \Rightarrow \boxed{I_4 = -1}.$$

5 Calculons l'intégrale définie I₅:

$$I_5 = \int_0^3 (\sqrt{2x} + x^{1/3}) dx \quad (a)$$

$$(a) \Leftrightarrow I_5 = \int_0^3 \sqrt{2x} dx + \int_0^3 x^{1/3} dx \quad (b)$$

$$(b) \Leftrightarrow I_5 = \int_0^3 (2x)^{1/2} dx + \int_0^3 x^{1/3} dx \quad (c)$$

$$(c) \Leftrightarrow I_5 = 2^{1/2} \int_0^3 x^{1/2} dx + \int_0^3 x^{1/3} dx \quad (d)$$

$$(d) \Leftrightarrow I_5 = 2^{1/2} \left[\frac{2}{3} x^{3/2} \right]_0^3 + \left[\frac{3}{4} x^{4/3} \right]_0^3 \quad (e)$$

$$(e) \Rightarrow I_5 = 2\sqrt{6} + \frac{3\sqrt{81}}{4\sqrt{81}}.$$

⁶ Calculons l'intégrale définie I_6 :

Nous savons que:

$$I_6 = \int_{-1}^0 \frac{dx}{x^3}$$
 (a)

$$(a) \Leftrightarrow I_6 = \int_{-1}^{0} x^{-3} dx \quad (b)$$

$$(b) \Leftrightarrow I_6 = \left[-\frac{1}{2} x^{-2} \right]_{-1}^0 \quad (c)$$

$$(c) \Rightarrow \boxed{I_6 = \frac{1}{2}}$$

7 Calculons l'intégrale définie I_7 :

Nous savons que:

$$I_7 = \int_{1}^{2} \frac{dx}{3x^2}$$
 (a)

$$(a) \Leftrightarrow I_7 = \int_1^2 \frac{x^{-2}}{3} dx \quad (b)$$

$$(b) \Leftrightarrow I_7 = \left[-\frac{x^{-1}}{3} \right]_1^2 \quad (c)$$

$$(c) \Rightarrow \boxed{I_7 = \frac{1}{6}}.$$

8 Calculons l'intégrale définie I_8 :

$$I_8 = \int_1^2 \left(x - \frac{1}{\sqrt{x}} \right) dx \quad (a)$$

$$(a) \Leftrightarrow I_8 = \int_1^2 x dx + \int_1^2 \left(-\frac{1}{\sqrt{x}}\right) dx \quad (b)$$

$$(b) \Leftrightarrow I_8 = \int_1^2 x dx + \int_1^2 (-x^{-1/2}) dx \quad (c)$$

$$(c) \Leftrightarrow I_8 = \left[\frac{x^2}{2}\right]_1^2 + \left[-2x^{1/2}\right]_1^2 \quad (d)$$

$$(d) \Rightarrow \boxed{I_8 = \frac{7}{2} - 2\sqrt{2}}.$$

9 Calculons l'intégrale définie I_0 :

Nous savons que:

$$I_9 = \int_0^1 \frac{dx}{x+2} \quad (a)$$

$$(a) \Leftrightarrow I_9 = [\text{Log}|x+2|]_0^1 \quad (b)$$

$$(b) \Leftrightarrow I_9 = \left[\text{Log}(|x+2|) \right]_0^1 \quad (c)$$

$$(c) \Rightarrow I_9 = \text{Log}_3 - \text{Log}_2$$
.

10 Calculons l'intégrale définie I_{10} :

Nous savons que:

$$I_{10} = \int_{3}^{6} e^{x} (e^{x} + 3) dx \quad (a)$$

$$(a) \Leftrightarrow I_{10} = \int_{3}^{6} (e^{2x} + 3e^{x}) dx$$
 (b)

$$(b) \Leftrightarrow I_{10} = \int_{3}^{6} e^{2x} dx + \int_{3}^{6} 3e^{x} dx \quad (c)$$

$$(c) \Leftrightarrow I_{10} = \left[\frac{1}{2}e^{2x}\right]_{3}^{6} + [3e^{x}]_{3}^{6} \quad (d)$$

$$(d) \Rightarrow \boxed{I_{10} = \frac{1}{2}e^{12} + \frac{5}{2}e^{6} - 3e^{3}}.$$

11 Calculons l'intégrale définie I_{11} :

$$I_{11} = \int_{-1}^{3} x |x| dx \quad (a)$$

$$(a) \Leftrightarrow I_{11} = \int_{-1}^{0} x(-x)dx + \int_{0}^{3} x(x)dx \quad (b)$$

$$(b) \Leftrightarrow I_{11} = \int_{-1}^{0} -x^{2} dx + \int_{0}^{3} x^{2} dx \quad (c)$$

$$(c) \Leftrightarrow I_{11} = \left[\frac{-x^3}{3}\right]_{-1}^0 + \left[\frac{x^3}{3}\right]_{0}^3 \quad (d)$$
$$(d) \Rightarrow \boxed{I_{11} = \frac{26}{3}}.$$

12 Calculons l'intégrale définie I_{12} :

Nous savons que:

$$I_{12} = \int_{2}^{0} \sqrt{|1 - x|} dx \quad (a)$$

$$(a) \Leftrightarrow I_{12} = \int_{2}^{0} (|1 - x|)^{1/2} dx \quad (b)$$

$$(b) \Leftrightarrow I_{12} = \int_{2}^{1} (x-1)^{1/2} dx + \int_{1}^{0} (1-x)^{1/2} dx \quad (c)$$

$$(c) \Leftrightarrow I_{12} = \left[\frac{2}{3}(x-1)^{3/2}\right]_{2}^{1} + \left[-\frac{2}{3}(1-x)^{3/2}\right]_{1}^{0} \quad (d)$$

$$(d) \Rightarrow \boxed{I_{12} = -\frac{4}{3}}.$$

13 Calculons l'intégrale définie I_{13} :

Nous savons que:

$$I_{13} = \int_{-1}^{1} (x^2 - \sqrt{|x|})^3 \sqrt{x^2} dx \quad (a)$$

$$(a) \Leftrightarrow I_{13} = \int_{-1}^{1} (x^2 - (|x|)^{1/2}) x^{2/3} dx \quad (b).$$

Or la fonction $f(x) = (x^2 - (|x|)^{1/2})x^{2/3}$ est une fonction paire, d'où :

$$(b) \Leftrightarrow I_{13} = 2 \int_0^1 (x^2 - (|x|)^{1/2}) x^{2/3} dx \quad (c)$$

$$(c) \Leftrightarrow I_{13} = 2 \int_0^1 (x^2 - x^{1/2}) x^{2/3} dx \quad (d)$$

$$(d) \Leftrightarrow I_{13} = 2 \int_{0}^{1} (x^{8/3} - x^{7/6}) dx \quad (e)$$

$$(e) \Leftrightarrow I_{13} = 2 \int_{0}^{1} x^{8/3} dx + 2 \int_{0}^{1} (-x^{7/6}) dx$$
 (f)

$$(f) \Leftrightarrow I_{13} = 2\left[\frac{3}{11}x^{11/3}\right]_0^1 + 2\left[-\frac{6}{13}x^{13/6}\right]_0^1 \quad (g)$$

$$(g) \Rightarrow \boxed{I_{13} = -\frac{54}{143}}.$$

14 Calculons l'intégrale définie I_{14} :

Nous savons que:

$$I_{14} = \int_{-2}^{2} (x^3 - \sqrt[3]{x}) x^2 dx \quad (a)$$

$$(a) \Leftrightarrow I_{14} = \int_{-2}^{2} (x^3 - x^{1/3}) x^2 dx \quad (b)$$

Or la fonction $f(x) = (x^3 - x^{1/3})x^2$ est une fonction impaire, d'où :

$$(b) \Rightarrow \boxed{I_{14} = 0}.$$

15 Calculons l'intégrale définie I_{15} :

Nous savons que:

$$I_{15} = \int_{-1}^{1} e^{(-2x+1)} dx$$
 (a).

Or la fonction $f(x) = e^{(-2x+1)}$ n'est ni une fonction paire, ni une fonction impaire,

d'où:
$$(a) \Leftrightarrow I_{15} = \left[-\frac{1}{2} e^{(-2x+1)} \right]_{-1}^{1} \quad (b)$$

 $(b) \Rightarrow \boxed{I_{15} = -\frac{1}{2} e^{-1} + \frac{1}{2} e^{3}}.$

TRAINING 3

Une intégrale indéfinie est une intégrale sans borne d'intégration.

Ainsi: $\int f(x)dx = F(x) + c$, $c \in \mathbb{R}$.

Calculer les intégrales indéfinies suivantes :

$$I_1 = \int (3x^2 + 9) dx.$$

$$I_2 = \int (\sqrt{x} - 3\sqrt[3]{2x}) dx.$$

3
$$I_3 = \int \left(\frac{1}{x^4} + 10\right) dx$$
.

$$I_4 = \int \left(\sqrt{x} + \frac{1}{x}\right) dx.$$

$$I_5 = \int a^x dx, \, a \in R_+^* - \{-1\} \, .$$

6
$$I_6 = \int (e^{x/a} + e^{-x/a})^2 dx, a \in R^*$$
.

CORRECTION

1 Calculons l'intégrale indéfinie I_1 :

$$I_1 = \int (3x^2 + 9)dx \quad (a)$$

$$(a) \Leftrightarrow I_1 = \int 3x^2 dx + \int 9 dx \quad (b)$$

$$(b) \Leftrightarrow I_1 = [x^3] + [9x] \quad (c)$$

$$(c) \Rightarrow \boxed{I_1 = x^3 + 9x + c}, c \text{ étant une constante.}$$

² Calculons l'intégrale indéfinie I_2 :

Nous savons que:

$$I_2 = \int (\sqrt{x} - 3\sqrt[3]{2x}) dx \quad (a)$$

$$(a) \Leftrightarrow I_2 = \int (x^{1/2} - 3(2x)^{1/3}) dx \quad (b)$$

$$(b) \Leftrightarrow I_2 = \int x^{1/2} dx + (-3)2^{1/3} \int x^{1/3} dx \quad (c)$$

$$(c) \Leftrightarrow I_2 = \left\lceil \frac{2}{3} x^{3/2} \right\rceil + (-3) 2^{1/3} \left\lceil \frac{3}{4} x^{4/3} \right\rceil \quad (d)$$

$$(d)$$
 \Rightarrow $I_2 = \frac{2}{3}x^{3/2} - \frac{9}{4}2^{1/3}x^{4/3} + c$, c étant une constante.

3 Calculons l'intégrale indéfinie I_3 :

Nous savons que:

$$I_3 = \int \left(\frac{1}{\left(x\right)^4} + 10\right) dx \quad (a)$$

$$(a) \Leftrightarrow I_3 = \int (x^{-4} + 10) dx \quad (b)$$

$$(b) \Leftrightarrow I_3 = \int x^{-4} dx + \int 10 dx \quad (c)$$

$$(c) \Leftrightarrow I_3 = \left[-\frac{1}{3} x^{-3} \right] + [10x] \quad (d)$$

$$(d) \Rightarrow I_3 = -\frac{1}{3}x^{-3} + 10x + c$$
, c étant une constante.

4 Calculons l'intégrale indéfinie I_4 :

$$I_4 = \int \left(\sqrt{x} + \frac{1}{x}\right) dx \quad (a)$$

$$(a) \Leftrightarrow I_4 = \int \sqrt{x} dx + \int \frac{1}{x} dx \quad (b)$$

$$(b) \Leftrightarrow I_4 = \int x^{1/2} dx + \int \frac{1}{x} dx \quad (c)$$

$$(c) \Leftrightarrow I_4 = \left\lceil \frac{2}{3} x^{3/2} \right\rceil + \left\lceil \log |x| \right\rceil \quad (d)$$

$$(d) \Rightarrow \boxed{I_4 = \frac{2}{3}x^{3/2} + \text{Log}|x| + c}, c \text{ étant une constante.}$$

5 Calculons l'intégrale indéfinie I_5 :

Nous savons que:

$$I_5 = \int a^x dx, a \in R_+^* - \{1\}$$
 (a)

$$(a) \Leftrightarrow I_5 = \int e^{\text{Log} a^x} dx \quad (b)$$

$$(b) \Leftrightarrow I_5 = \int e^{x \text{Log} a} dx \quad (c)$$

$$(c) \Leftrightarrow I_5 = \left[\frac{1}{\log a} e^{x \log a}\right] \quad (d)$$

$$(d) \Rightarrow I_5 = \frac{1}{\text{Log}a}a^x + c$$
, c étant une constante.

6 Calculons l'intégrale indéfinie I_6 :

$$I_6 = \int (e^{x/a} + e^{-x/a}) dx, a \in R^*$$
 (a)

$$(a) \Leftrightarrow I_6 = \int (e^{2x/a} + e^{-2x/a} + 2)dx \quad (b)$$

$$(b) \Leftrightarrow I_6 = \int e^{2x/a} dx + \int e^{-2x/a} dx + \int 2dx \quad (c)$$

$$(c) \Leftrightarrow I_6 = \begin{bmatrix} \frac{a}{2}e^{2x/a} \end{bmatrix} + \begin{bmatrix} -\frac{a}{2}e^{-2x/a} \end{bmatrix} + [2x] \quad (d)$$

$$(d) \Rightarrow \boxed{I_6 = \frac{a}{2}e^{2x/a} - \frac{a}{2}e^{-2x/a} + 2x + c}, c \text{ étant une constante.}$$

TRAINING 4

Calculer les intégrales définies suivantes :

$$I_1 = \int_{2}^{3} \frac{x + 1/2}{x^2 + x - 3} dx.$$

$$I_2 = \int_0^3 \frac{2x+1}{\sqrt{2x+1}} dx$$
.

$$I_4 = \int_0^{e^2} 3(1+x^3)x^2 dx.$$

$$I_5 = \int_1^5 \sqrt{2x-1} \, dx \, .$$

6
$$I_6 = \int_0^3 \frac{dx}{\sqrt{25-3x}}$$

$$I_7 = \int_0^1 \frac{x^2}{2+x^3} dx.$$

$$\mathbf{8} \quad I_8 = \int_1^2 \frac{dx}{x(1 + \log x)}.$$

$$I_9 = \int_0^1 \frac{e^x}{(10 - 3e^x)^2} dx.$$

$$\mathbf{10} \quad I_{10} = \int_{0}^{1} \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} dx.$$

$$I_{11} = \int_0^1 x^2 \sqrt{1 + x^3} dx.$$

$$I_{12} = \int_0^1 e^{-x} (1 + e^x) dx.$$

13
$$I_{13} = \int_{e}^{e^2} \frac{1 + \text{Log}x}{x \text{Log}x} dx.$$

CORRECTION

1 Calculons I_1 :

$$I_1 = \int_2^3 \frac{x+1/2}{x^2+x-3} dx$$
.

Ici :
$$f(x) = \frac{x + 1/2}{x^2 + x - 3} \Leftrightarrow f(x) = \frac{1}{2} \left(\frac{U'(x)}{U(x)} \right)$$
,

avec:
$$U(x) = x^2 + x - 3$$
 et $U'(x) = 2x + 1$.

D'où :
$$I_1 = \frac{1}{2} \int_{2}^{3} \frac{U'(x)}{U(x)} dx$$

$$\Leftrightarrow I_1 = \frac{1}{2} [\ln(U(x))]_2^3$$

$$\Leftrightarrow I_1 = \frac{1}{2} [\ln(x^2 + x - 3)]_2^3$$

$$\Rightarrow I_1 = \frac{\ln(3)}{2}.$$

² Calculons I₂:

$$I_2 = \int_0^3 \frac{2x+1}{\sqrt{2x+1}} dx$$
.

Ici:
$$f(x) = \frac{2x+1}{\sqrt{2x+1}} \Leftrightarrow f(x) = [U(x)]^{1/2}$$
,

$$avec: U(x) = 2x + 1.$$

Nous pouvons aussi écrire :

$$f(x) = \frac{1}{2}U'(x) \times (U(x))^{1/2}$$
, avec : $U'(x) = 2$.

D'où :
$$I_2 = \frac{1}{2} \int_0^3 U'(x) \times (U(x))^{1/2} dx$$

$$\Leftrightarrow I_2 = \frac{1}{2} \left[\frac{U^{3/2}}{3/2} \right]_0^3$$

$$\Leftrightarrow I_2 = \frac{1}{3} [U^{3/2}]_0^3$$

$$\Leftrightarrow I_2 = \frac{1}{3}[(2x+1)^{3/2}]_0^3$$

$$\Rightarrow I_2 = \frac{7\sqrt{7}-1}{3}.$$

3 Calculons I_3 :

$$I_3 = \int_0^1 x(1+x^2)dx$$
.

Ici:
$$f(x) = x(1+x^2) \Leftrightarrow f(x) = \frac{1}{2}U'(x) \times (U(x))^1$$
,

avec:
$$U(x) = 1 + x^2$$
 et $U'(x) = 2x$.

D'où:
$$I_3 = \frac{1}{2} \int_0^1 U'(x) \times (U(x))^1 dx$$

$$\Leftrightarrow I_3 = \frac{1}{2} \left[\frac{(U(x))^2}{2} \right]_0^1$$

$$\Leftrightarrow I_3 = \frac{1}{4} [(U(x))^2]_0^1$$

$$\Leftrightarrow I_3 = \frac{1}{4}[(1+x^2)^2]_0^1$$

$$\Rightarrow I_3 = \frac{3}{4}$$

4 Calculons I_4 :

$$I_4 = \int_1^{e^2} 3(1+x^3)x^2 dx.$$

Ici:
$$f(x) = 3x^2(1+x^3) \Leftrightarrow f(x) = U'(x) \cdot (U(x))^1$$
,

avec:
$$U(x) = 1 + x^3$$
 et $U'(x) = 3x^2$.

D'où :
$$I_4 = \int_1^{e^2} U'(x) \times (U(x))^1 dx$$

$$\Leftrightarrow I_4 = \left\lceil \frac{(U(x))^2}{2} \right\rceil_1^{e^2}$$

$$\Leftrightarrow I_4 = \frac{1}{2}[(1+x^3)^2]_1^{e^2}$$

$$\Rightarrow I_4 = \frac{e^{12} + 2e^6 - 3}{2}.$$

5 Calculons I_5 :

$$I_5 = \int_1^5 \sqrt{2x - 1} \, dx \, .$$

Ici:
$$f(x) = \sqrt{2x-1} \Leftrightarrow f(x) = \frac{1}{2}U'(x) \times (U(x))^{1/2}$$
,

avec:
$$U(x) = 2x - 1$$
 et $U'(x) = 2$.

D'où :
$$I_5 = \int_{1}^{5} \frac{1}{2} U'(x) \times (U(x))^{1/2} dx$$

$$\Leftrightarrow I_5 = \frac{1}{2} \left[\frac{\left(\left(U(x) \right)^2 \right)^{3/2}}{\frac{3}{2}} \right]_1^5$$

$$\Leftrightarrow I_5 = \frac{1}{3}[(2x-1)^{3/2}]_1^5$$

$$\Rightarrow I_5 = \frac{26}{3}$$

6 Calculons I_6 :

$$I_6 = \int_0^3 \frac{dx}{\sqrt{25 - 3x}}$$

Ici:
$$f(x) = \frac{1}{\sqrt{25-3x}} \Leftrightarrow f(x) = -\frac{1}{3} \frac{U'(x)}{\sqrt{U(x)}}$$

avec:
$$U(x) = 25 - 3x$$
 et $U'(x) = -3$.

D'où :
$$I_6 = \int_0^3 -\frac{1}{3} \frac{U'(x)}{\sqrt{U(x)}} dx$$

$$\Leftrightarrow I_6 = -\frac{1}{3} [2\sqrt{U(x)}]_0^3$$

$$\Leftrightarrow I_6 = -\frac{2}{3} \left[\sqrt{25 - 3x} \right]_0^3$$

$$\Rightarrow \boxed{I_6 = \frac{2}{3}}.$$

7 Calculons I_7 :

$$I_7 = \int_0^1 \frac{x^2}{2 + x^3} dx$$
.

Ici :
$$f(x) = \frac{x^2}{2+x^3} \Leftrightarrow f(x) = \frac{1}{3} \frac{U'(x)}{U(x)}$$
,

avec:
$$U(x) = 2 + x^3$$
 et $U'(x) = 3x^2$.

D'où :
$$I_7 = \int_0^1 \frac{1}{3} \frac{U'(x)}{U(x)} dx$$

$$\Leftrightarrow I_7 = \frac{1}{3} [\ln(U(x))]_0^1$$

$$\Leftrightarrow I_7 = \frac{1}{3} [\ln[2 + x^3]]_0^1$$

$$\Rightarrow I_7 = \frac{1}{3} \ln \left(\frac{3}{2} \right).$$

8 Calculons I_8 :

$$I_8 = \int_1^2 \frac{dx}{x(1+\ln x)}.$$

Ici:
$$f(x) = \frac{1}{x(1 + \ln x)} \Leftrightarrow f(x) = \frac{U'(x)}{U(x)}$$

avec:
$$U(x) = 1 + \ln x$$
 et $U'(x) = \frac{1}{x}$.

D'où :
$$I_8 = \int_{1}^{2} \frac{U'(x)}{U(x)} dx$$

$$\Leftrightarrow I_8 = [\ln(U(x))]_1^2$$

$$\Leftrightarrow I_8 = [\ln[1 + \ln x]]_1^2$$

Training 4

$$\Rightarrow \boxed{I_8 = \ln(1 + \ln 2)}.$$

9 Calculons I_0 :

$$I_9 = \int_0^1 \frac{e^x}{(10 - 3e^x)^2} dx.$$

Ici:
$$f(x) = \frac{e^x}{(10 - 3e^x)^2} \Leftrightarrow f(x) = -\frac{1}{3} \frac{U'(x)}{[U(x)]^2}$$
,

avec:
$$U(x) = 10 - 3e^x$$
 et $U'(x) = -3e^x$.

D'où :
$$I_9 = \int_0^1 -\frac{1}{3} \frac{U'(x)}{[U(x)]^2} dx$$

$$\Leftrightarrow I_9 = -\frac{1}{3} \int_0^1 \frac{U'(x)}{[U(x)]^2} dx$$

$$\Leftrightarrow I_9 = -\frac{1}{3} \left[\frac{-1}{U(x)} \right]_0^1$$

$$\Leftrightarrow I_9 = \frac{1}{3} \left[\frac{1}{10 - 3e^x} \right]_0^1$$

$$\Rightarrow I_9 = \frac{1}{3} \left(\frac{1}{10 - 3e} \right) - \frac{1}{21}.$$

10 Calculons I_{10} :

$$I_{10} = \int_0^1 \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$
.

Ici:
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \Leftrightarrow f(x) = \frac{U'(x)}{U(x)},$$

avec:
$$U(x) = e^{x} + e^{-x}$$
 et $U'(x) = e^{x} - e^{-x}$.

D'où :
$$I_{10} = \int_0^1 \frac{U'(x)}{U(x)} dx$$

$$\Leftrightarrow I_{10} = [\ln(U(x))]_0^1$$

$$\Leftrightarrow I_{10} = \left[\ln\left[e^{x} + e^{-x}\right]\right]_{0}^{1}$$

$$\Rightarrow I_{10} = \ln\left[\frac{e + e^{-1}}{2}\right].$$

11 Calculons I_{11} :

$$I_{11} = \int_0^1 x^2 \times \sqrt{1 + x^3} dx$$
.

Ici:
$$f(x) = x^2 \times \sqrt{1 + x^3} \Leftrightarrow f(x) = \frac{1}{3}U'(x) \times (U(x))^{1/2}$$
,

avec:
$$U(x) = 1 + x^3$$
 et $U'(x) = 3x^2$.

D'où :
$$I_{11} = \int_0^1 \frac{1}{3} U'(x) (U(x))^{1/2} dx$$

$$\Leftrightarrow I_{11} = \frac{1}{3} \left[\frac{\left(U(x) \right)^{3/2}}{3/2} \right]_0^1$$

$$\Leftrightarrow I_{11} = \frac{2}{9}[(1+x^3)^{3/2}]_0^1$$

$$\Rightarrow I_{11} = \frac{4\sqrt{2}}{9} - \frac{2}{9}.$$

12 Calculons I_{12} :

$$I_{12} = \int_0^1 e^{-x} (1 + e^x) dx$$
.

Ici:
$$f(x) = e^{-x}(1 + e^{x}) \Leftrightarrow f(x) = U(x)(1 + \frac{1}{U(x)}),$$

avec :
$$U(x) = e^{-x}$$
 et $\frac{1}{U(x)} = e^{x}$.

D'où :
$$I_{12} = \int_0^1 U(x) \left(1 + \frac{1}{U(x)}\right) dx$$

$$\Leftrightarrow I_{12} = \int_0^1 (U(x) + 1) dx$$

$$\Leftrightarrow I_{12} = \int_0^1 (e^{-x} + 1) dx$$

Training 4

$$\Leftrightarrow I_{12} = [-e^{-x} + x]_0^1$$
$$\Rightarrow I_{12} = 2 - e^{-1}.$$

13 Calculons I_{13} :

$$I_{13} = \int_{e}^{e^2} \frac{1 + \ln x}{x \ln x} dx \,.$$

Ici:
$$f(x) = \frac{1 + \ln x}{x \ln x} \Leftrightarrow f(x) = \frac{U'(x)}{U(x)}$$
,

avec: $U(x) = x \ln x$ et $U'(x) = 1 + \ln x$.

D'où :
$$I_{13} = \int_{e}^{e^2} \frac{U'(x)}{U(x)} dx$$

$$\Leftrightarrow I_{13} = [\ln(U(x))]_e^{e^2}$$

$$\Leftrightarrow I_{13} = [\ln[x \ln x]]_e^{e^2}$$

$$\Rightarrow \boxed{I_{13} = 1 + \ln 2}.$$

INTÉRROS LYCÉES

- INTÉRRO. 1 PAGE 37
- INTÉRRO. 2 PAGE 39
- INTÉRRO. 3 PAGE 42
- INTÉRRO. 4 PAGE 47
- INTÉRRO. 5 PAGE 49

INTERRO. 1

Soit
$$I = \int_3^4 \frac{7dx}{\sqrt{x^2 + 2}}$$
.

- (a). Calculer la dérivée de $g(x) = \sqrt{x^2 + 2}$.
- **(b).** En déduire sur [3,4] f', avec $f(x) = \ln(x + \sqrt{x^2 + 2})$.
- ©. Que vaut alors *I* ?
- 2 (a). Calculer l'intégrale $I = \int_{2}^{4} \left(\frac{6x-3}{x-1}\right) dx$, en mettant I sous la forme :

$$I = 3 \int_2^4 \left(a + \frac{b}{x-1} \right) dx.$$

(b). En déduire la valeur moyenne de f sur [2,4] avec :

$$f(x) = \frac{6x-3}{x-1}.$$

CORRECTION

1 (a). Calculons g':

$$g(x) = \sqrt{x^2 + 2} .$$

Posons: $g = \sqrt{g_1} \text{ avec}: g_1(x) = x^2 + 2$.

 g_1 est dérivable sur \mathbb{R} comme fonction polynôme et $g_1(x) > 0$, $\forall x \in \mathbb{R}$.

De plus, la fonction racine est dérivable sur $]0, +\infty[$.

Donc g est dérivable sur \mathbb{R} , comme composée, et nous pouvons calculer g' .

$$\forall x \in \mathbb{R}, g'(x) = \frac{x}{\sqrt{x^2 + 2}}$$

(b). Sur [3,4], déduisons en f':

$$f(x) = \ln(x + \sqrt{x^2 + 2}).$$

Posons: $f = \ln(g_2 + g)$ avec: $g_2(x) = x$.

 g_2 est dérivable sur $\mathbb R$ comme fonction polynôme et g est dérivable sur $\mathbb R$ d'après a), par conséquent (g_2+g) est dérivable sur $\mathbb R$ comme somme de 2 fonctions dérivables sur $\mathbb R$. (g_2+g) est donc dérivable sur [3,4].

De plus : $\forall x \in [3,4]$, $(g_2 + g)(x) > 0$ et la fonction ln est dérivable sur $[0, +\infty[$. Donc f est dérivable sur [3,4] , comme composée, et nous pouvons calculer f'.

$$\forall x \in [3,4], f'(x) = \frac{1}{\sqrt{x^2 + 2}}$$

©. Déterminons la valeur de I:

$$I = 7 \int_{3}^{4} \left(\frac{1}{\sqrt{x^2 + 2}} \right) dx.$$

Par conséquent : $I = 7[\ln(x + \sqrt{x^2 + 2})]_3^4$

$$\Rightarrow I = 7 \ln \left(\frac{4 + \sqrt{18}}{3 + \sqrt{11}} \right)$$

2 (a). Déterminons a et b :

$$\frac{6x-3}{x-1} = 3\left(a + \frac{b}{x-1}\right)$$

$$\Leftrightarrow$$
 6x - 3 = 3(a(x - 1) + b)

$$\Leftrightarrow 2x - 1 = ax + (b - a).$$

Par identification, nous avons : $\begin{cases} a = 2 \\ b - a = -1 \end{cases} \Rightarrow \begin{cases} a = 2 \\ b = 1 \end{cases}.$

Calculons alors I:

$$I = \int_{2}^{4} 3\left(2 + \frac{1}{x - 1}\right) dx.$$

 $f(x) = \frac{6x-3}{x-1}$ est continue sur [2,4], elle admet donc des primitives sur [2,4] et par conséquent I existe.

$$I = 3 \int_{2}^{4} \left(2 + \frac{1}{x - 1}\right) dx$$

$$\Leftrightarrow I = 3 \left[2x + \ln(x - 1)\right]_{2}^{4}$$

$$\Rightarrow \boxed{I = 12 + 3 \ln 3}.$$

(b). Déduisons-en la valeur moyenne de f sur [2,4]:

D'après le cours, elle correspond au nombre μ tel que : $\mu = \frac{1}{4-2} \int_{2}^{4} f(x) dx$.

Ici, nous avons donc : $\mu = \frac{1}{2}I \Rightarrow \overline{\mu = 6 + 1.5 \ln 3}$.

INTERRO. 2

1 Soit
$$f(x) = \frac{2x^2}{3(x-1)^2}$$
, avec : $\mathcal{D}f = \mathbb{R} - \{1\}$.

(a). Déterminer
$$a,b,c \in \mathbb{R}$$
 tels que : $\forall x \in]1, +\infty[,f(x) = a + \frac{b}{(x-1)} + \frac{c}{(x-1)^2}$.

- (b). Calculer alors : $I = \int_{3}^{7} f(x) dx$.
- ©. En déduire la valeur moyenne de f sur [3,7].

(a). Calculer K_1 et $K_0 + K_1$ et en déduire K_0 .

- **(b).** Déterminer $K_{n+1} + K_n$.
- ©. En déduire K_2 et K_3 .

CORRECTION

1 (a). Déterminons a, b, c:

 $\forall x \in]1, +\infty[$, nous avons alors :

$$\frac{2x^2}{3(x-1)^2} = a + \frac{b}{(x-1)} + \frac{c}{(x-1)^2}$$

$$\Leftrightarrow \frac{2x^2}{3(x-1)^2} = \frac{a(x-1)^2 + b(x-1) + c}{(x-1)^2}$$

$$\Leftrightarrow \frac{2}{3}x^2 = a(x^2 + 1 - 2x) + b(x-1) + c.$$

Par identification, nous avons:

$$\begin{cases} a = 2/3 \\ -2a + b = 0 \Rightarrow \\ a - b + c = 0 \end{cases} \begin{vmatrix} a = 2/3 \\ b = 4/3 \\ c = 2/3 \end{vmatrix}.$$

$\widehat{\mathbf{b}}$. Calculons I:

Soit $f(x) = \frac{2x^2}{3(x-1)^2}$. f est continue sur [3,7], elle admet donc des primitives sur

[3,7] et par conséquent *I* existe.

$$I = \frac{2}{3} \int_{3}^{7} \frac{x^{2}}{(x-1)^{2}} dx \Leftrightarrow I = \frac{1}{3} \cdot \int_{3}^{7} \left(2 + \frac{4}{(x-1)} + \frac{2}{(x-1)^{2}}\right) dx$$

$$\Leftrightarrow I = \frac{1}{3} \cdot \left[2x + 4\ln(x-1) - \frac{2}{(x-1)}\right]_{3}^{7}$$

$$\Rightarrow \boxed{I = \frac{1}{3} \cdot \left(\frac{26}{3} + 4\ln 3\right)}.$$

©. Déduisons-en la valeur moyenne de f sur [3,7] :

D'après le cours, elle correspond au nombre μ tel que : $\mu = \frac{1}{7-3} \int_3^7 f(x) dx$.

Ici, nous avons donc : $\mu = \frac{1}{4} I \Rightarrow \mu = \frac{1}{12} \cdot \left(\frac{26}{3} + 4 \ln 3\right)$.

2 (a). Calculons K_1 , $K_0 + K_1$ et déduisons-en K_0 :

Soit $f(x) = \frac{e^{nx}}{e^x + 1}$, $\forall x \in \mathbb{N}$ et $\forall x \in \mathbb{R}$. D'une manière générale, f est continue sur

[0,1] , elle admet donc des primitives sur [0,1] et par conséquent K_n existe.

Dans ces conditions, nous pouvons calculer K_1 et K_0 .

•
$$K_1 = \int_0^1 \frac{e^x}{e^x + 1} dx \Leftrightarrow K_1 = \int_0^1 \frac{U'(x)}{U(x)} dx$$
, avec : $U(x) = e^x + 1$ et $U'(x) = e^x$.

D'où:
$$K_1 = [\ln(U(x))]_0^1 \Leftrightarrow K_1 = [\ln(e^x + 1)]_0^1$$

$$\Rightarrow K_1 = \ln(e+1) - \ln 2 \Rightarrow K_1 = \ln\left(\frac{e+1}{2}\right).$$

$$K_0 + K_1 = \int_0^1 \left(\frac{1}{e^x + 1} + \frac{e^x}{e^x + 1} \right) dx$$

$$\Leftrightarrow K_0 + K_1 = \int_0^1 dx$$

$$\Leftrightarrow K_0 + K_1 = [x]_0^1$$

$$\Rightarrow K_0 + K_1 = 1$$

• Par conséquent :
$$K_0 = 1 - K_1 \Rightarrow \boxed{K_0 = 1 - \ln\left(\frac{e+1}{2}\right)}$$

(b). Déterminons $K_{n+1} + K_n$:

$$K_{n+1} + K_n = \int_0^1 \frac{e^{(n+1)x} + e^{nx}}{e^x + 1} dx$$

$$\Leftrightarrow K_{n+1} + K_n = \int_0^1 e^{nx} \left(\frac{e^x + 1}{e^x + 1} \right) dx$$

$$\Leftrightarrow K_{n+1} + K_n = \int_0^1 e^{nx} dx \Leftrightarrow K_{n+1} + K_n = \frac{1}{n} [e^{nx}]_0^1$$

$$\Rightarrow K_{n+1} + K_n = \frac{e^n - 1}{n}.$$

\odot . Déduisons-en K_2 et K_3 :

D'une manière générale nous avons donc : $K_{n+1} = \left(\frac{e^n - 1}{n}\right) - K_n$

$$\begin{split} \text{D'où}: & \quad K_2 = (e-1) - K_1 \Rightarrow \boxed{K_2 = (e-1) - \ln\left(\frac{e+1}{2}\right)}; \\ & \quad (n=1) \end{split}; \\ & \quad K_3 = \left(\frac{e^2 - 1}{2}\right) - K_2 \Rightarrow \boxed{K_3 = \left(\frac{e^2 - 1}{2}\right) - (e-1) + \ln\left(\frac{e+1}{2}\right)}. \\ & \quad (n=2) \end{split}$$

INTERRO. 3

Soit
$$I_n = \int_0^1 \frac{4x^n}{x^2 + x + 1} dx$$
 avec $n \in \mathbb{N}^*$.

Sachant que l'on a : $1 \le e^x + x \le e + 1$, déterminer un encadrement de I_n .

2 Montrer que :

$$-\frac{1}{5} \le \int_{1}^{3} \frac{1}{1+x^2} dx \le 1 \quad (1)$$

$$\frac{1}{\sqrt{5}} \le \int_0^{1/2} \frac{1}{\sqrt{1+x^2}} dx \le \frac{1}{2} \quad (2) .$$

3 Soit
$$I_n = \int_0^1 \frac{x^n}{1 + 2x + 4x^2} dx$$
, $n \in \mathbb{N}$.

(a). Déterminer les constantes $C_1, C_2 \in \mathbb{R}$ telles que :

$$\forall x \in [0, 1], C_1 \le \frac{1}{1 + 2x + 4x^2} \le C_2.$$

ⓑ. En déduire un encadrement de I_n sur [0,1] et la limite de I_n quand n tend vers $+\infty$.

CORRECTION

1 Déterminons un encadrement de I_n :

D'après l'énoncé : $1 \le e^x + x \le e + 1$ (1).

$$(1) \Leftrightarrow 1 + 1 \le e^x + x + 1 \le e + 1 + 1$$

$$\Leftrightarrow 2 \le e^x + x + 1 \le e + 2$$

$$\Leftrightarrow \frac{1}{e+2} \le \frac{1}{e^x + e^x + 1} \le \frac{1}{2}$$
 (2),

car sur [0,1], tous ces termes sont strictement positifs.

$$(2) \Leftrightarrow \frac{4x^n}{e+2} \le \frac{4x^n}{e^x + x + 1} \le \frac{4x^n}{2} \quad (3), \operatorname{car} x^n > 0 \ \operatorname{sur} [0,1].$$

Soient les fonctions :
$$g(x) = \frac{4x^n}{e+2}$$
, $f(x) = \frac{4x^n}{e^x + x + 1}$ et $h(x) = \frac{4x^n}{2}$.

g, f et h sont continues sur [0,1], elles admettent donc des primitives sur [0,1] et par conséquent : $\int_0^1 g(x)dx$, $\int_0^1 f(x)dx$ et $\int_0^1 h(x)dx$ existent.

- De plus, les fonctions g, f et h sont positives sur [0,1].
- Enfin, les bornes d'intégration sont dans l'ordre croissant.

Les conditions étant réunies,

$$(3) \Leftrightarrow \int_0^1 \left(\frac{4x^n}{e+2}\right) dx \le \int_0^1 \left(\frac{4x^n}{e^x + x + 1}\right) dx \le \int_0^1 \left(\frac{4x^n}{2}\right) dx$$

$$\Leftrightarrow \left(\frac{4}{e+2}\right) \cdot \left[\frac{x^{(n+1)}}{(n+1)}\right]_0^1 \le I_n \le 2 \cdot \left[\frac{x^{(n+1)}}{(n+1)}\right]_0^1$$

$$\Rightarrow \frac{4}{(n+1)(e+2)} \le I_n \le \frac{2}{(n+1)}.$$

2 (a). Montrons (1) :

$$\forall x \in [1,3], 1 \le x \le 3 \Leftrightarrow 1 \le x^2 \le 9$$

$$\Leftrightarrow 2 \le 1 + x^2 \le 10$$

$$\Leftrightarrow \frac{1}{10} \le \frac{1}{1+r^2} \le \frac{1}{2}$$
 (1'),

car sur [1,3], tous ces termes sont strictement positifs.

• Soient les fonctions :
$$g(x) = \frac{1}{10}$$
, $f(x) = \frac{1}{1+x^2}$ et $h(x) = \frac{1}{2}$.

g, f et h sont continues sur [1,3], elles admettent donc des primitives sur [1,3] et par conséquent : $\int_{1}^{3} g(x)dx$, $\int_{1}^{3} f(x)dx$ et $\int_{1}^{3} \frac{1}{2}dx$ existent.

- De plus, les fonctions g, f et h sont positives sur [1,3].
- Enfin, les bornes d'intégration sont dans l'ordre croissant.

Les conditions étant réunies,

$$(1') \Leftrightarrow \int_{1}^{3} \left(\frac{1}{10}\right) dx \le \int_{1}^{3} \left(\frac{1}{1+x^{2}}\right) dx \le \int_{1}^{3} \left(\frac{1}{2}\right) dx$$
$$\Leftrightarrow \frac{1}{10} [x]_{1}^{3} \le \int_{1}^{3} \left(\frac{1}{1+x^{2}}\right) dx \le \frac{1}{2} \cdot [x]_{1}^{3}$$
$$\Rightarrow \left[\frac{1}{5} \le \int_{1}^{3} \left(\frac{1}{1+x^{2}}\right) dx \le 1\right].$$

b. Montrons (2) :

$$\forall x \in [0, 1/2], \ 0 \le x \le 1/2 \Leftrightarrow 0 \le x^2 \le 1/4$$

$$\Leftrightarrow 1 \le 1 + x^2 \le 5/4$$

$$\Leftrightarrow 1 \le \sqrt{1 + x^2} \le \frac{\sqrt{5}}{2}, \text{ avec } 1 + x^2 > 0, \ \forall x \in [0, 1/2]$$

$$\Leftrightarrow \frac{2}{\sqrt{5}} \le \frac{1}{\sqrt{1 + x^2}} \le 1 \quad (2'),$$

car sur [0,1/2], tous ces termes sont strictement positifs.

Soient les fonctions :
$$g(x) = \frac{2}{\sqrt{5}}$$
, $f(x) = \frac{1}{\sqrt{1+x^2}}$ et $h(x) = 1$.

g, f et h sont continues sur [0,1/2], elles admettent donc des primitives sur [0,1/2] et par conséquent : $\int_0^{1/2} g(x)dx$, $\int_0^{1/2} f(x)dx$ et $\int_0^{1/2} h(x)dx$ existent.

- De plus, les fonctions g, f et h sont positives sur [0,1/2].
- Enfin, les bornes d'intégration sont dans l'ordre croissant.

Les conditions étant réunies,

$$(2') \Leftrightarrow \int_0^{1/2} \left(\frac{2}{\sqrt{5}}\right) dx \le \int_0^{1/2} \left(\frac{1}{\sqrt{1+x^2}}\right) dx \le \int_0^{1/2} dx$$
$$\Leftrightarrow \frac{2}{\sqrt{5}} \cdot \left[x\right]_0^{1/2} \le \int_0^{1/2} \left(\frac{1}{\sqrt{1+x^2}}\right) dx \le \left[x\right]_0^{1/2}$$
$$\Rightarrow \frac{1}{\sqrt{5}} \le \int_0^{1/2} \left(\frac{1}{\sqrt{1+x^2}}\right) dx \le \frac{1}{2}.$$

f a f a . Déterminons les constantes C_1 et C_2 :

$$\forall x \in [0,1], 0 \le x \le 1 \Leftrightarrow 0 \le 4x^2 \le 4$$

 $\Leftrightarrow 0 \le 2x + 4x^2 \le 6$

$$\Leftrightarrow 1 \le 1 + 2x + 4x^2 \le 7$$

$$\Leftrightarrow \frac{1}{7} \le \frac{1}{1 + 2x + 4x^2} \le 1 \quad (1),$$

car sur [0,1], tous ces termes sont strictement positifs.

$$(1) \Leftrightarrow C_1 \le \frac{1}{1 + 2x + 4x^2} \le C_2 \quad (2).$$

Donc:
$$C_1 = \frac{1}{7} \text{ et } C_2 = 1$$
.

ⓑ. Encadrons alors I_n et déterminons limite I_n quand $n \to +\infty$:

(2)
$$\Leftrightarrow \frac{x^n}{7} \le \frac{x^n}{1 + 2x + 4x^2} \le x^n$$
 (3), car $x^n > 0$ sur [0,1].

• Soient les fonctions :
$$g(x) = \frac{x^n}{7}$$
, $f(x) = \frac{x^n}{1 + 2x + 4x^2}$ et $h(x) = x^n$.

g, f et h sont continues sur [0,1], elles admettent donc des primitives sur [0,1] et par conséquent : $\int_0^1 g(x)dx$, $\int_0^1 f(x)dx$ et $\int_0^1 h(x)dx$ existent.

- De plus, les fonctions g, f et h sont positives sur [0,1].
- Enfin, les bornes d'intégration sont dans l'ordre croissant.

Les conditions étant réunies,

$$(3) \Leftrightarrow \frac{1}{7} \left[\frac{x^{(n+1)}}{(n+1)} \right]_0^1 \le \int_0^1 \frac{x^n}{1 + 2x + 4x^2} dx \le \left[\frac{x^{(n+1)}}{(n+1)} \right]_0^1$$
$$\Rightarrow \frac{1}{7(n+1)} \le \int_0^1 \frac{x^n}{1 + 2x + 4x^2} dx \le \frac{1}{(n+1)}.$$

Ici:
$$\lim_{n \to +\infty} \frac{1}{7(n+1)} = 0$$
 et $\lim_{n \to +\infty} \frac{1}{(n+1)} = 0$,

d'où, d'après le théorème des gendarmes nous pouvons affirmer que : $\begin{bmatrix} \lim_{n \to +\infty} I_n = 0 \end{bmatrix}$

INTERRO. 4

- 1 Soit f(x) définie sur $]0, +\infty[$ par : $f(x) = 3x^2 + 7 4lnx$.
- (a). Montrer que $H(x) = x \ln x x$ est une primitive de $h(x) = \ln x$, sur $]0, +\infty[$.
- **b**. En déduire alors une primitive F de f sur [1;5].
- ©. Quelle est la primitive G de f qui s'annule en $x_0 = 4$?
- (d). Calculer la valeur moyenne "m" de f sur [1;5].

2 Soit
$$J = \int_{1}^{2} \left(\frac{2t}{1+t}\right) \cdot dt$$
, pour quoi peut-on affirmer que : $J \in \left[1; \frac{4}{3}\right]$?

3 Calculer
$$I = \int_{-1}^{2} (x^2 + 1) dx$$
.

CORRECTION

- 1 ⓐ. Montrons que H est une primitive de h sur $]0, +\infty[$:
- Soit $h(x) = \ln x$. h est continue sur $]0, +\infty[$, elle admet donc des primitives sur $]0, +\infty[$ et par conséquent $:h(x) = \int h(x)dx$ existe.
- Ici, H est une primitive de h ssi : $\forall x \in]0, +\infty[$, H'(x) = h(x).

$$H'(x) = 1 \times \ln x + x \times \frac{1}{x} - 1 \Rightarrow \overline{H'(x) = \ln x}$$

Donc **oui**, H est bien une primitive de h sur $]0, +\infty[$.

(b). Déduisons-en une primitive F de f sur [1;5]:

Soit $f(x) = 3x^2 + 7 - 4\ln x$. f est continue sur $]0, +\infty[$ donc sur [1;5], elle admet donc des primitives sur [1;5] et par conséquent : $F(x) = \int f(x) dx$ existe.

$$F(x) = \int (3x^2 + 7 - 4\ln x) dx \Rightarrow F(x) = x^3 + 11x - 4x \ln x$$

©. Déterminons une primitive G de f qui s'annule en $x_0 = 4$:

D'une manière générale, les primitives de f sur $]0, +\infty[$ et donc sur [1;5] sont de la forme : G(x) = F(x) + c, c étant une constante appartenant à \mathbb{R} .

$$G(x) = F(x) + c \Leftrightarrow G(x) = (x^3 + 11x - 4x \cdot \ln x) + c.$$

$$G(x_0) = 0 \Leftrightarrow G(4) = 0 \Leftrightarrow (64 + 44 - 16\ln 4) + c = 0$$

$$\Leftrightarrow 108 - 32\ln 2 + c = 0$$

$$\Rightarrow c = -108 + 32\ln 2.$$

Au total, une primitive G de f qui s'annule en $x_0 = 4$ est :

$$G(x) = x^3 + 11x - 4x \cdot \ln x + (-108 + 32 \ln 2)$$

(d). Calculons la valeur moyenne de f sur [1;5]:

Soit "m", la valeur moyenne de f sur [1;5],

$$m$$
 est telle que : $m = \frac{1}{5-1} \cdot \int_{1}^{5} f(x)dx$ (1).

(1)
$$\Leftrightarrow m = \frac{1}{4} \cdot [x^3 + 11x - 4x \cdot \ln x]_1^5$$
 (2)

(2)
$$\Leftrightarrow m = \frac{1}{4} \cdot (168 - 20 \ln 5)$$
 (3)

$$(3) \Rightarrow m = 42 - 5 \ln 5.$$

2 Montrons pourquoi $J \in \left[1; \frac{4}{3}\right]$:

$$J = \int_{1}^{2} \left(\frac{2t}{1+t}\right) dt.$$

$$\forall t \in [1,2], 1 \le t \le 2 \Leftrightarrow 2 \le 2t \le 4$$
 (a).

De plus, $\forall t \in [1,2]$, $1 \le t \le 2 \Leftrightarrow 2 \le 1 + t \le 3$ (b).

Sur [1, 2],
$$2t > 0$$
 et $1 + t > 0$, par conséquent : $\frac{2}{2} \le \frac{2t}{1+t} \le \frac{4}{3} \Leftrightarrow \boxed{1 \le \frac{2t}{1+t} \le \frac{4}{3}}$ (c).

• Soient les fonctions :
$$g(t) = 1$$
, $f(t) = \frac{2t}{1+t}$ et $h(t) = 4/3$.

g, f et h sont continues sur [1, 2], elles admettent donc des primitives sur [1, 2] et par conséquent : $\int_{1}^{2} g(t)dt$, $\int_{1}^{2} f(t)dt$ et $\int_{1}^{2} h(t)dt$ existent.

- De plus, les fonctions g, f et h sont positives sur [1, 2].
- Enfin, les bornes d'intégration sont dans l'ordre croissant.

Les conditions étant réunies,

$$(c) \Leftrightarrow \int_{1}^{2} (1) \cdot dt \leq \int_{1}^{2} \left(\frac{2t}{1+t}\right) \cdot dt \leq \int_{1}^{2} \left(\frac{4}{3}\right) \cdot dt$$
$$\Leftrightarrow \left[t\right]_{1}^{2} \leq \int_{1}^{2} \left(\frac{2t}{1+t}\right) dt \leq \frac{4}{3} \left[t\right]_{1}^{2}$$
$$\Rightarrow \boxed{1 \leq J \leq 4/3}.$$

3 Calculons I:

Cela revient à calculer $I = \int_{-1}^{2} (x^2 + 1) dx$.

Soit $f(x) = x^2 + 1$. f est continue sur [-1, 2], elle admet donc des primitives sur [-1, 2] et par conséquent : $I = \int_{-1}^{2} (x^2 + 1) dx$ existe.

Dans ces conditions :
$$I = \left[\frac{x^3}{3} + x\right]_{-1}^2 \Rightarrow \overline{I = 6}$$
.

INTERRO. 5

1 On rappelle que si f est une fonction continue et positive sur un intervalle [a,b], alors la fonction F définie sur [a,b] par $F(x) = \int_a^x f(t)dt$ est l'unique primitive de f sur [a,b] qui s'annule en a.

Soit
$$F(x) = \int_{1}^{x} \frac{\ln t}{2t} dt$$
, $\forall t \in [1, +\infty[$.

- (a). Montrer que la fonction $f(t) = \frac{\ln t}{2t}$ est positive sur $[1, +\infty[$.
- **b.** Déterminer alors l'unique primitive de f sur $[1, +\infty[$ qui s'annule en $x_0=1$.
- 2 Une entreprise a pour coût marginal de production :

$$C_m(q) = 3q^2 - 24q + 70, \quad q \in]0, 10].$$

- (a). Définir la notion de coût marginal et donner sa formule en microéconomie.
- **b**. En déduire la fonction de coût total de l'entreprise si elle ne possède pas de coût fixe.
- C. Même question si la firme a des coûts fixes égaux à :

CF = 300 u.c (unités de compte).

- $\widehat{\mathbf{d}}$. Calculer alors le coût moyen du producteur CM(q), ainsi que sa dérivée quand il y a absence de coût fixe.
- (e). Montrer que le coût moyen et le coût marginal s'intersectent au minimum du coût moyen.
- Déterminer la primitive F de $f(x) = \frac{-2}{x^2}$ sur $]-\infty$, 0[avec : F(-1) = 3.

CORRECTION

1 (a). Montrons que la fonction f est positive sur $[1, +\infty[$:

$$Ici: f(t) = \frac{\ln t}{2t}.$$

Sur $[1, +\infty[, \ln t \ge 0 \text{ et } 2t > 0]$.

Par conséquent : comme f est le quotient de 2 fonctions positives, le dénominateur ne s'annulant pas sur $[1, +\infty[$, nous pouvons affirmer que : $\forall t \in [1, +\infty[$, $f(t) \ge 0$].

(b). Déterminons l'unique primitive recherchée :

Soit $f(t) = \frac{\ln t}{2t}$, f est continue et positive sur $[1, +\infty[$. Par conséquent, la fonction

F définie sur $[1, +\infty[$ par $F(x) = \int_1^x f(t)dt$ est l'unique primitive de f sur $[1, +\infty[$ qui s'annule en $x_0 = 1$.

$$F(x) = \int_{1}^{x} \frac{\ln t}{2t} dt \Leftrightarrow F(x) = \int_{1}^{x} \frac{1}{2} U'(t) \times U(t) dt, \text{ avec} : U(t) = \ln t \text{ et } U'(t) = \frac{1}{t}.$$

Dans ces conditions :
$$F(x) = \frac{1}{2} \left[\frac{1}{2} \cdot U(t)^2 \right]_1^x \Leftrightarrow F(x) = \frac{1}{2} \left[\frac{1}{2} \cdot (\ln t)^2 \right]_1^x$$

 $\Leftrightarrow F(x) = \frac{1}{4} \left[(\ln t)^2 \right]_1^x \Rightarrow \boxed{F(x) = \frac{1}{4} (\ln x)^2}.$

2 (a). (a1). Définissons la notion de coût marginal en microéconomie :

Nous savons que le coût marginal Cm(q) correspond au supplément de coût résultant de la fabrication d'une unité supplémentaire d'output (output = produit).

(a2). Donnons sa formule :

Soit C(q), la fonction de coût total de l'entreprise, avec q > 0, la fonction de coût marginal est alors donnée par la formule : Cm(q) = C'(q).

(b). Déterminons la fonction de coût total de la firme avec CF = 0:

Comme Cm(q) = C'(q), nous pouvons en déduire que : $C(q) = \int Cm(q) \cdot dq$.

Soit $f(x) = 3x^2 - 24x + 70$. f est continue sur $]0, +\infty[$, donc sur]0, 10], elle admet donc des primitives sur]0, 10] et par conséquent : $\int f(x)dx$ existe.

$$C(q) = \int (3q^2 - 24q + 70)dq \iff C(q) = [q^3 - 12q^2 + 70q]$$
$$\Rightarrow C(q) = q^3 - 12q^2 + 70q + C, C \in \mathbb{R}.$$

Or
$$CF = 0$$
 signifie: $C(0) = 0 \Rightarrow \overline{C = 0}$.

Au total, la fonction de coût total de la firme, sans coût fixe (loyer, etc...) est :

$$C(q) = q^3 - 12q^2 + 70q.$$

©. Même question avec CF = 300 U.C.:

$$CF = 300$$
 signifie $C(0) = 300 \Rightarrow \overline{C = 300}$.

Dans ces conditions, en présence de coûts fixes, la fonction de coût total s'écrit :

$$C(q) = q^3 - 12q^2 + 70q + 300.$$

(d). Calculons CM(q) et CM'(q) quand CF = 0:

• CM(q) nous est donné par la formule : $CM(q) = \frac{C(q)}{q}$

D'où :
$$CM(q) = q^2 - 12q + 70$$
.

■ CM'(q) = 2q - 12, CM(q) étant dérivable sur $]0, +\infty[$ et donc sur]0, 10], comme fonction polynôme.

(e). (e1). Déterminons le minimum du coût moyen :

Le minimum du coût moyen est tel que : CM'(q) = 0, avec CM''(q) > 0.

$$CM'(q) = 0 \Rightarrow \boxed{q_{min} = 6}$$
 et $CM''(q) = 2 > 0$.

e2. Déterminons la valeur particulière de q qui correspond à l'intersection du coût moyen et du coût marginal :

Soit q^* , cette valeur, q^* est telle que : CM(q) = Cm(q).

$$CM(q) = Cm(q) \Leftrightarrow q^2 - 12q + 70 = 3q^2 - 24q + 70 \Leftrightarrow 2q^2 - 12q = 0$$

 $\Leftrightarrow q(q-6) = 0 \Rightarrow q^* = 0 \text{ ou } q^* = 6.$

Nous retiendrons $q^* = 6$ car c'est la seule valeur strictement positive.

Au total, nous avons bien $q_{min} = q^* = 6$.

3 Déterminons la primitive F de f sur $]-\infty$, 0[avec F(-1) = 3:

Soit $f(x) = \frac{-2}{x^2}$. f est continue sur $]-\infty$, 0[, elle admet donc des primitives sur

]- ∞ , 0[et par conséquent : $F(x) = \int \left(\frac{-2}{x}\right) \cdot dx$ existe.

•
$$F(x) = \int \left(\frac{-2}{x^2}\right) \cdot dx \implies F(x) = \frac{2}{x} + C, C \in \mathbb{R}$$
.

• Or on désire F(-1) = 3, d'où : C = 5.

Au total, la primitive F de f sur $]-\infty$, 0[avec F(-1) = 3 est : $F(x) = \frac{2}{x} + 5$.

MATHS
TERMINALES
S ~ ES

1

Cours éco-gestion L1~L2~L3 Déchire Tout !!!

ACHETER
LES LIVRES
D'ALAIN PILLER

① CORRIGÉS

Annales BAC Corrigées

Diffusion Belin

PRIX:6€

PREMIUM ÉDITEUR